The Mathematica Programmer
i

Combinators

Combinators are an alternative to pure functions. They do not use variables and are, thercfore,
immune to the scoping problems caused by conflicts of names of formal parameters. We present

an introduction to combinatory algebras and show how to convert pure functions into combina-
tors. The implementation of these ideas requires control of the order of substitutions in rewrite

rules. We discuss the techniques needed to achieve this control.

Roman E. Maeder

My article “Higher-Order Functions” in the previous issue of
this journal [Maeder 1995] introduced pure functions, which
look like Function[z, body] in Mathematica. As we saw, the
fact that a name has to be chosen for the formal parameter
can lead to problems.

Here is a variant of the Curried addition from the previous
article.

wi= add = Function[y, Function[x, x + y]]
01 Function[y, Function[x, x + y]]

When the definition is evaluated, the formal parameter x is
renamed x$.

2= add[y]
o2 Function[x$, x$ + y]

Here we see why the renaming is necessary. This function
adds x to its argument, as we expect.

W3- add[x]
03 Function[x$, x$ + x]

If no renaming had taken place, we would have gotten
Function[x, x + x], a function that doubles its argument.

There is an alternative way to define functions. The main
idea is not to use any variables at all.

Combinatory Algebras

Functional languages modeled after A-calculus provide two
basic operations: application (of functions to arguments),
and abstraction. Abstraction takes a term ¢ and a variable =
and forms the function A z.t or Function[z, ¢].

In a combinatory algebra, there is just one operation:
application. Because there is no way to define functions by
abstraction, some basic operations need to be built in. These

————————

Roman Maeder is one of the designers of Mathematica and the author of three
books on Mathematica-related topics. He is now a professor of computer science
at the Swiss Federal Institute of Technology (ETH) in Ziirich, Switzerland.

are the constants or basic combinators. Combinatory terms
are built up from the constants and variables by repeated
application. In the literature, the application of term ¢, to
term ¢, is written t;¢,, omitting the operator (similar to the
way multiplication is often written without the dot). Appli-
cation is taken to be left associative; that is, zyz is inter-
preted as (zy) z, not as z (yz).

Remarkably, two basic combinators suffice to express all
possible functions. Let us see how this works. With abstrac-
tion we can turn any term ¢ (involving the variable z) into a
function Function[z, t]. If we want to define the same func-
tion as a combinatory term we must find a term 7T (not con-
taining z) such that Tz = t. In this case, T describes the same
function as Function[z, t]. The term ¢ is either an atom (a
variable or a constant) or it is composite, ¢ = ¢;¢,. For each of
these possibilities, we can easily see what kind of combina-
tors are necessary to find the corresponding T

m If ¢ is the variable z, the term T must be the identity
combinator I, with the property

IX=X forallX (1)

Therefore, Tz = Iz = z, as required.

m If ¢{ is a constant or variable ¢, other than z, then the
function Function[z,] is constant, returning ¢ no matter
what its argument is. Therefore, we need a constructor
for constant functions, the combinator K with the
property

KXY=X forallX,Y (2)
We can set T'= Kc. Then Tz = Kcz = ¢, as required.

m If{isacomposite term tt,, we can recursively find com-
binatory terms T and T, with the properties Tz =t,
and T,z =t,. To build T we need a combinator S that
distributes an argument onto two terms:

SXYZ=XZ(YZ) forallX,Y,2Z (3)

We can set T'=STT,. Then Tz =ST T2z = Tyz(Tyz) =
t1t,, as required.

VOLUMES ISSUE4 2

The combinator I is even redundant. We can use SKK
instead, because SKKX = KX(KX) = X, according to equa-
tions 3 and 2. However, we will keep working with all three
combinators, to make our sometimes rather complicated
terms more readable.

Formally, a combinatory algebra is a structure with one
binary operation (application) that contains two constants S
and K with the desired properties stated in equations 3 and
2. Combinatory terms are defined inductively:

A variable is a combinatory term.
A constant is a combinatory term.

If t, and t, are combinatory terms, then ¢;¢, (the appli-
cation of ¢, to t;) is a combinatory term.

A combinator is a term that does not contain any variables.
If the combinatory algebra doesn’t contain any constants
besides S and K, combinators will be terms containing only S
and K.

Combinatory algebras were developed by Schonfinkel and
Curry in the 1920s [Schonfinkel 1924; Curry 1930]. They
studied systems of combinatory logic (logic without vari-
ables), including the S§ and K combinators. These systems
were later found to be paradoxical and thus unsuitable for
the description of logic. (We shall explain the paradoxical
nature later, in the section on fixed points.) Combinators
have an obvious operational nature, however: they trans-
form terms in various ways. As such it is no surprise that
interest in them was renewed in theoretical computer sci-
ence. Programs, too, have an operational aspect; it seems
natural to use A-calculus or combinatory algebras to describe
the semantics of programming languages.

In the formal treatment of combinatory logic, the combi-
nators S and K define a reduction (term-rewriting) relation
according to the rules

KXY - X

(4)
SXYZ - XZ(YZ)

A term that does not contain any reducible subterms is said
to be in normal form.

It is, of course, trivial to implement these rules in Mathe-
matica. We can use the familiar form of application of a
function to an argument t,[t;] to realize the operation of
application ¢, in a combinatory algebra. This representa-
tion is also left associative: t;[t,][t3] stands for t;t,t; =
(t1t5)t3, rather than for t,(t,t3) (the latter is t,[t,[£3]]). As a
consequence, you will encounter expressions that are deeply
nested in their head position, something that is rarely seen in
other applications.

The symbols S, K, and I are so standard in the literature
that we do not want to use different names. To protect them
from interference with built-in objects (I being the main
problem), we define them in their own context. The reduc-
tion rules for S, K, and I (equation 4) are easily programmed.
Here is part of the package Combinators.m:

36 THE MATHEMATICA JOURNAL © 1995 Miller Freeman Publications

BeginPackage["Combinators™"]

*S::usage = "S is the distributive combinator."
*K::usage = "K is the constant combinator."
"I is the identity combinator."

*I::usage
Begin["*Private™"]

I[x_] :=x
K[x_J0y_] :=x
S[x_10y.1(z.] := x[z][y[z]]

End([]
Protect[S, K, I
EndPackage(]

Note that we introduce the three symbols S, K, and I in the
usage messages in the form °S, “K, and “I. The context marks
(backquotes) force them to be created in the current context
Combinators', even if they exist already in the system context.
Without the initial context mark, I would refer to the exist-
ing symbol in the system context. Once defined, the symbol
lookup rules (which search the system context last) guarantee
that the unadorned form I refers to the combinator, rather
than to the complex number.

n4)= Needs["Combinators'"]

I::shdw: Warning: Symbol I appears in multiple contexts
{Combinators™, System'}; definitions in context
Combinators™ may shadow or be shadowed by other
definitions.

The warning message alerts us to our nonstandard practice
of declaring symbols that shadow system symbols. The I
combinator hides the complex number I, which is what we
want here.

ns)= 71

I is the identity combinator.

The rule takes effect as intended.

nel= I[x]
Outlol= X

We can see that I could indeed be replaced by SKK. The two
combinators behave in the same way.

7= SIKIKI[x]

OQul7}= X

Combinatory Abstraction

In the previous section we gave the rules for converting a
term ¢, involving the variable z, into a combinatory term T
such that Tz = t. The operation of converting ¢ to T'is writ
ten A"z.t. According to equations 1-3 it can be defined induc
tively as follows:

rMra =1
rz.c = Ke for atoms ¢ # z (5)
Aoty ty = S(Az.ty) (A'z.t5)

These rules are sufficient, but they can give unnecessarily
Complicarcd results. There are two obvious improvements
we can make. First, we can treat composite terms not con-
qining « as if they were constant atoms. For constants ¢ and

4 we get
Mr.ed =S (Xz.c)(Az.d) = S(Kc) (Kd)

However, the simpler term K(cd) works as well, because
K(cd)X = cd = S(Kc) (Kd)X. We will, therefore, use the rule
w'r.t = Kt for any terms not containing z, not only for atoms.
A second important special case is A*z.t,z, where ¢; does not
contain 7. Instead of S(A*z.t;) (A*z.z) = S(K¢,)], we can simply
use t;, since obviously ¢,z = t,z. Additionally, we define a
form of A" with several arguments according the recursion

AMTTy .. T, t = AT AT, L AT, 8

Here are the definitions for LambdaStar[z][t], our implemen-
tation of A*z.t:

LanbdaStar [x_Symbol][x_] := I
LanbdaStar [x_Symbol][c_] /; FreeQ[c, x] := K[c]
LanbdaStar [x_Symbol]l[f_[x_]] /; FreeQ[f, x] := f

LanbdaStar [x_Symbol][a_[b_]] :=
S[LambdaStar [x] [a]] [LambdaStar[x][b]]

LanbdaStar [x_Symbol, y__I[t_] :=
LambdaStar [x][LambdaStar[y][Unevaluated[t]]]

The extra Unevaluated in the last rule preserves t in unevalu-
ated form throughout the recursion, if LambdaStar was origi-
nally called in the form LambdaStar [z, ..., z,,][Unevaluated[¢]].
(We will need this form in the next section.) If no Unevaluated
is present in the original call, nothing bad happens because t
is evaluated in the original call and is then merely passed
along.

These two expressions demonstrate the identity and con-
stants, respectively.

18- {LambdaStar([x][x], LambdaStar[x][c]}
wig: {I, K[c]}

We can always check the results by applying them to x.
We should get the original expression back. (Recall that

Through[{f,, f,}(args]] gives {f[args], f>[args]}.)

“9)= Through[%[x]]
g {x, c}

This result is the equivalent of the n rule in A-calculus, which
Says thar Function[x, f[x]] is the same as simply f.

in10}= LambdaStar[x][f[x]]
Outf10)= f

Here is an example where the function itself depends on x.

inf11)= LambdaStar[x][x[e]]
oui11)= S[I][K[e]]

2= 40x]
oul12)- x[e]

Self-application leads to this term.

in(13)= LambdaStar[x][x[x]]
out13}= S[I][I]

When this term is applied to itself we get an infinite iteration.
The term SII(SII) does not have a normal form. It has a single
infinite reduction: SI(SII) — I(SII)(I(SII)) — SII(SII).

nay= %A
$IterationLimit::itlim: Iteration limit of 4096 exceeded.

ouli4j- Hold[I[S[T](I]][T[S[T](1]]]]
Here is an example with two variables.

in(15)= LambdaStar[x, y][y[x]1[y]l]
outisl S[S[K[SII[SIK[S[T1]] (K]]I [K[T]]

Interfacing with Built-In Functions

Unary functions in Mathematica can simply be treated as
constants in our combinatory algebra. The treatment of
binary functions is not as straightforward. In combinatory
algebras, functions have only one argument, as they do in A-
calculus. Functions of several variables can be Curried:
Instead of f[z, y], we use f[z][y]. To interface with binary
functions built into Mathematica, we can simply define a
combinator that represents the Curried form of a function.
We call it c. It has the property that

cFXY=F(X,Y) forall F, X, Y (6)
The corresponding rule for A" is
Ax.f(a, b) =A'z.cfab (7)

We cannot implement this rule naively. The term ¢ fab would
turn back into f(z, y) by equation 6. Therefore, we apply the
rule for S once to get S(A*z.cfa)(A"z.b). Here are the necessary
additions to our package:

‘c:iusage =
"c[f] represents the binary function f in Curried form."

clf 10x 10y := flx, y]

LambdaStar[x_][f_[a_, b_]] :=
S[LambdaStar[x] [c[f][a]]][LambdaStar[x][b]]

VOLUME 5, ISSUE4 37

Here is the term representing a binary sum as a combina-
tory term.

inj16)= LambdaStar([x, yl[x+yl
ouitsl: S[SIKISII[SIKKI] [cPLlus]]II(K([1]]

It checks out as expected.

inji73= hlal[b]
Oui7= 3 +b

Abstracting over y first gives a different term. We have not
expressed the fact that addition is commutative.

in18)= LambdaStar[y, x][x+y]
ouie S[K[S[c[Plus]]]][K]

Here is a more complicated example involving one binary
function (multiplication) and two unary ones.

in19)= LambdaStar[x][Sin[x] Cos[x]]
ou19= S[S[K[c[Times]]][Cos]][Sin]

Converting Functions to Combinators

Now we have all the tools needed to convert pure functions
into combinators. We can simply turn the function
Function[z, t] into LambdaStar[z, t]. The result of applying
either to an argument a, that is, LambdaStar[z, t]1[a] or
Function[z, t]1[al, is t /. = -> a. Therefore, we can use the
combinator in place of the pure function.

Because the syntax for pure functions allows some varia-
tions, we need several rules. We can also deal with functions
of several variables by turning Function[{vars...}, body] into
LambdaStar [vars...]1[body]. Here is the definition of the con-
version operation toCombinators[expr]:

toCombinators: :usage = "toCombinators[expr] converts all
pure functions in expr into combinators."

SetAttributes[{leafQ, unevQ}, HoldFirst]
leafQexpr_] := FreeQ[Hold[expr], Literal[Function[_, _]]]
unevQ[expr_] := leafQ[expr] &&

FreeQ[Hold[expr], Literal[LambdaStar[__]1[_]1]

toCombinators[expr_] :=
expr //. {

Literal[Function[{}, body_]] :> body,

Literal[Function[{x__}, body_7unevQ]] :>
LambdaStar [x] [Unevaluated[body]],

Literal[Function[x_, body_7unevQ]] :>
LambdaStar [x] [Unevaluated[body]],

Literal[Function[{x__}, body_7leaf(]] :>
LambdaStar [x] [body],

Literal[Function[x_, body_7leafQ]] :>
LambdaStar [x] [body]

38 THE MATHEMATICA JOURNAL © 1995 Miller Freeman Publications

The rules contain a few subtleties, which we want to
explain here. The predicates leafQ and unev in the patterns
guarantee that innermost pure functions are converted first,
before the functions containing them. The predicate
unevQ[expr] is true if expr contains no functions or instances
of LambdaStar; leafQlexpr] is true if expr contains no
functions. Only the innermost functions contain no other
functions; they are the only ones for which these predicates
are true the first time the substitution operation //. applies
the rules.

We give the predicates the attribute HoldFirst, because we
want to apply them to parts of our expressions that are not
evaluated, such as bodies of pure functions. A predicate in a
pattern, such as Function[x_, body_?pred], is tested by first
matching the pattern variable body with an expression expr
and then evaluating predlexpr]. If pred didn’t have the
attribute HoldFirst, expr would be evaluated in the normal
way as the argument of pred.

This example shows the effect just described. Our “predi-
cate” prints out its argument, so we can see exactly what
expression it receives as argument.

in20)= Hold[x+x] /. Hold[expr_?Print] :> nothing
2x
outf20)= Hold[x + x]

The argument of the predicate is 2x, rather than x+x.

To further preserve the argument of the predicate in
unevaluated form, it is wrapped in Hold when it is used as the
argument of FreeQ. Observe also that we wrap all patterns
involving Function or LambdaStar in Literal to prevent their
evaluation.

If we omit Literal around the pattern Function[_, _] we
get an error message, because Function[_, _] is evaluated (as
the argument of FreeQ). Treated as a pure function, it is syn-
tactically wrong, as the error message (correctly) points out.

nf21)= FreeQ[Hold[Function[x, x+x]], Function[_, _1]
Function::flpar:
Parameter specification _ in Function[_, _]
should be a symbol or a list of symbols.
ouf21)= False

There is no need to evaluate the pattern, so it is best wrapped
in Literal.

nj22)= FreeQ[Hold[Function[x, x+x]], Literal[Function[_, _11]
Ou22)- False

The order of conversion of the pure functions is impor-
tant: If an outer pure function containing another one in its
body were converted first, the Unevaluated would prevent the
code of the inner LambdaStar from ever being called.

During conversion, inner pure functions are turned into
(unevaluated) expressions involving LambdaStar. Therefore, if
the body of a function contains an instance of LanbdaStar, we
must evaluate it to trigger the code of LambdaStar. (Normally,
we do not want to evaluate bodies of functions.) Because
the rules turn pure functions into something else, every pure

function in our expression will eventually be a leaf; therefore,
the conditions do not prevent that all functions are con-

verted.

Let us now sec the combinators obtained from some
jmportant pure functions. Our rules work nicely to convert
the pure functions corresponding to the three basic combi-
nators S, K, and T'into their simplest forms.

.- toCombinators[Function[x, x]]
o3k 1

w241~ toCombinators[Function[{x, vy}, x1 1]
o2tk K

5= toCombinators[Function[{x, y, 2}, x[z1(y[z]]]]

Some of the resulting combinators have standard names.
We shall need them in the next section.
This a constant function that always returns c.

vizs)- toCombinators[Function[x, c]]
ouizel Klc]

Our inside-out conversion order makes sure that scoping
rules are observed. This nested function returns its second
argument, not its first one.

27- toCombinators[Function[x, Function[x, x1]]
w271 K[I)

We can easily check our statement.

128 hIx1 0yl

The B combinator represents function composition.

29- B = toCombinators[Function[{f, g, x}, flg[x]1]]
owizsl- SIK[S]] (K]

Verification is trivial, since we constructed it as a pure func-
tion with exactly this body.

w- B[f1[g][x]
0st20;= flg(x]]

The C combinator exchanges the two arguments of a Cur-
ried function. The symbol C also appears in the system con-
text; therefore, we force it to be created in the current
(global) context in the same way as we did in the package.

il- C = S[BIBI S]] KIK]]
C::shdw: Warning: Symbol C appears in multiple contexts
{Global®, System'}; definitions in context Global'
may shadow or be shadowed by other definitions.

at31)- S[SIKSIKSI (K111 (S]] [K[K]]

32} CLFICx]Cy]
o2l fly][x] :

The W combinator doubles its second argument.

n33)- W = LambdaStar[x, y](x[yl[y]]
ouasl S[SIIK[I]]

i34 = W[F][x]
out34)- fx][x]

Here is the Curried form of addition add with which we
started this article. No variables are left; therefore, no renam-
ing problems can occur.

in35)= toCombinators[Function[y, Function[x, x+y]]]
ou3sl- S(K[S[c[Plus]]]][K]

This expression corresponds to add[x] in the input In[3]
above. It is a function that adds x to its argument.

inf36)= H[x]
ou3sl- S[c[Plus]](K([x]]

Indeed, that is what it does.

n37)= Alal
Out37 @ + X

The use of Unevaluated prevents the evaluation of the body
of the pure functions during the conversion.

in(38]= toCombinators[Function[x, x+x]]
ou3s)= S[c[Plus]][I]

If we hadn’t used Unevaluated, the body x+x would have turned
into 2x and we would have gotten this combinator.

Inf39)= toCombinators[Function[x, 2x]]
ou3sk S[K[c[Times][2]11]1([1]

(In this simple case, the two resulting functions behave the
same way, however.)

Fixed Points

Our article on higher-order functions in the last issue of this
journal discussed fixed points of functions. We constructed
an operator Y such that Y(f) = f(Y(f)) The same construc-
tion works also in combinatory algebras.

We can define Y in terms of the combinators introduced in
the previous section. Y has the property that Yf = f(Y/).

g0} ¥ = WS][BIWI[B]];
Fixed points are infinite terms. Here we can see how they are

built up. The fixed point is an infinite sequence of nested fs:

fIFLFL...00...000.

VOLUME 5, ISSUE4 39

inf41)= Block[{$RecursionLimit = 20}, Y[f]]
$RecursionLimit::reclim: Recursion depth of 20 exceeded.
outar) FLFLELFLFLFLFLFLELE(f (Hold[SIK[£1]] [Hodd[S[SIK[£11]1[T1]]
(Hold[S[S(K[f111[11111111111111]

Although an attempt to reduce Yf leads to an infinite
reduction, we can still prove that Yf = f(Yf) by transforming
the term according to the leftmost combinators B, W, and §
as follows:

Yf = WS(BWB)f

= S(BWB)(BWB)f

= BWBf(BWB/) (8)
= W(Bf)(BWBY)

= Bf(BWBf)(BWB{)

= f(BWBf(BWB/)))

= f(Y[)

where the last step follows from noting that the second term
in Line 9 is equal to Line 8 and, therefore, to Y.

The existence of fixed points for all terms means that a
negation combinator would also have a fixed point. But a
logic in which a term is equal to its negation is inconsistent.
It follows that this system cannot form the basis for ordinary
logic.

Computations in Combinatory Algebras

Let us show that we can perform computations with integers
in a combinatory algebra. We show how to realize the natu-
ral numbers in this formalism. It can be shown that all com-
putable functions can be implemented as combinators. The
definitions from this section are in the file Numerals.m.

Inj42)= << Numerals.m

The truth values true and false can be given as T = K and
F = KI, respectively. With this definition, the conditional
if B then M else N is simply BMN. If B is true, we get M:

in43)= TLMI[N]
Outl43= M

If B is false, we get N:

inja4}= F[MI[N]
Outj44a= N

Next, we need a pairing construct. With P = A*mnz.zmn,
the term PMN is an encoding of the ordered pair <M, N >.
The components can be extracted by applying it to T and F,
respectively. This term represents the pair <M, N >.

inj4s)= pair = P[M][N]
outasi= S[SLTIKMITIKIN]]

40 THE MATHEMATICA JOURNAL © 1995 Miller Freeman Publications

The two components of the pair are extracted easily;

ines= {pair[T], pair[F]}
oulesl- {M, N}

Now, we can represent numbers. The integer 0 is repre-
sented by 0 =1, and an integer n >0 is represented by
7 =PFn — 1. The function num[n] performs this conversiop,

num[0] := I
num[n_Integer?Positive] := PLF] [num[n-1]]

Here is the term that represents the number §.

inf47)= num[5]

outerk S[SII) KK (TI11] [K(SLSLT] [KIKLTIIII KISTSLT) KIKLTIN)
(K[SISLT] [KIKLTIII K [SSITI (KK [TIT] (K[T111100100]

These definitions are useful only if we can actually com-
pute with these numbers. Everything has been set up in such
a way that the successor function succ and the predecessor

function pred (with pred[0] = 0) are easy to implement. We |

need also a zero test zero[n] that returns true if n=0, and
false otherwise. Here they are:

succ = LambdaStar [x][P[F][x]]
pred = LambdaStar [x][x[F]]
zero = LambdaStar [x][x[T]]

Here is the number 2, defined as the two-fold successor of .

in48}= Nest[succ, num[0], 2]

oues)= S[S[TI(KIKLTIIT] (KISCSITI (KIK[TIIII K [T1]]

Applying the predecessor to it twice gets us back to 0 =1.

inl49= Nest([pred, %, 2]
Outf49= I

How can we define functions on numbers, such as add:-
tion? The standard recursive definition of plus is

plus = hzy. if x =0 then y else plus(z - 1)(y+1)

We convert this definition into a combinatory term p whose
smallest fixed point is the desired function plus:

p = A fzy.zerozy(f(predz)(succy))

Now, we can set plus = Yp. Because Y is involved, this &
does not have a normal form; evaluation would not term
nate. (There are other ways to represent numbers as combi
natory terms and to convert recursive definitions int© com-
binators that do not have this problem.)

o

>onclusions

'his example shows once more that Mathematica is well
uited to implementing formal systems and to experimenting
vith them. Here, we used expressions that have deeply
ested heads. We showed how we can specify the order of
valuation using replacement rules with conditions. More
nformation about combinatory algebras can be found in the
extbook [Hindley and Seldin 1986] or the standard refer-
nce |Barendregt 1984).

leferences

arendregt, H.P. 1984. The Lambda Calculus, revised ed.
Studies in Logic 103. North Holland, Amsterdam.

urry, H.B. 1930. Grundlagen der kombinatorischen Logik.
Amer. |. Math. 5§2:509-536, 789-834.

Hindley, J. Roger, and Jonathan P. Seldin. 1986. Introduction
to Combinators and »-Calculus. London Math. Soc. Stu-
dent Texts 1. Cambridge Univ. Press, London.

Maeder, Roman E. 1995. Higher-order functions. The Math-
ematica Journal 5(3): 61-67.

Schonfinkel, M. 1924. Ucber die Bausteine der mathemati-
schen Logik. Math. Annalen 92:305-316.

Roman E. Maeder

ETH Zurich, Institute of Theoretical Computer Science,
ETH Zentrum IFW, 8092 Zurich, Switzerland
maeder@inf.ethz.ch

1l The electronic supplement contains the package
Combinators.m and Numerals.m, as well as the note-
book Combinators.ma with the examples from this article.

DAMSAIR AP &0 ARG add » &=

